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Abstract—In this paper, the construction of solutions to tran-
sient electromagnetic (EM) problems in terms of two collinear
vector potentials (VPs) is subjected to a careful theoretical study
and numerical verification. The analysis concerns a general
isotropic medium that can be inhomogeneous, lossy, and may
contain sources. It is also assumed that the medium has instanta-
neous response, i.e., its EM properties are frequency independent.
First, the completeness of the solution in terms of the two VPs in
homogeneous and inhomogeneous media is addressed. Second, the
behavior of the VPs at interfaces and edges is considered. Finally,
a number of simple, but relevant numerical tests are performed
to verify the theoretical model. This paper is part of the effort to
establish the theoretical background of a novel efficient approach
to the analysis of transient EM propagation based on the VPs.

Index Terms—Electromagnetic potentials, electromagnetic tran-
sient analysis, FDTD methods.

I. INTRODUCTION

I T IS well known that the electromagnetic (EM) field can be
described not only in terms of the field vectors, but also in

terms of vector and scalar potentials. In [1], the following has
been stated for time–harmonic fields in an isotropic medium, but
it is also true in the general transient case: “an arbitrary field in
a homogeneous source-free region can be expressed as a sum of
a TM field and a TE field.” The TM (with respect to the distin-
guished direction of an arbitrary unit vector) field is described
by the magnetic vector potential (VP) , while the TE
field is described by the electric VP . Both potentials
are solutions of the wave equation in the time domain (or the
Helmholtz’ equation in the frequency domain). Both vectors are
collinear of fixed direction . The scalars and will be re-
ferred to as wave potentials (WPs).

A similar concept is addressed in [2], where a robust math-
ematical proof can be found for the representation of the EM
field in terms of two scalar quantities, which are the magnitudes
of two collinear Hertz potentials (the electric Hertz potential
and the magnetic Hertz potential ) in an isotropic homoge-
neous source-free medium. In fact, the concept can be traced
back to 1904, when Whittaker proved that “only two functions
are actually necessary (in place of four),” i.e., , to de-
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scribe the EM field associated with any configuration of moving
or static charges (see [3]).

It should be recognized that the concept of TE/TM decompo-
sition (or scalarization) of the EM field has often been revisited
by researchers in the field of theoretical electromagnetism and
complex media electromagnetism. This subject is rather broad
and the interested reader is referred to just very few relevant
papers [4]–[7], which provide both comprehensive coverage of
the new developments in the field and extensive lists of refer-
ences. At the same time, the approaches of modern computa-
tional electromagnetics are almost exclusively based on models,
which treat the field vectors directly: the system of Maxwell’s
equations or its equivalent integral equations. This paper will
consider the concept of EM scalarization from the point-of-view
of computational electrodynamics. However, its purpose is not
the introduction of yet another time-domain analysis approach.
It is the hope of the author that this paper will help to add more
light onto the subject of EM potentials, their significance, and
usefulness, especially from a computational point-of-view.

To the author’s knowledge, the formulation of a numerical
approach to the solution of a general (lossy, inhomogeneous,
involving sources) transient EM problem in terms of VPs has
never been considered in detail. A possible reason is that it was
deemed too complicated for practical purposes. Moreover, the
solution to a transient EM problem in terms of two scalar po-
tentials (the WPs) has always been dismissed as an impossible
task. However, as it will be shown below, the general analysis
reveals interesting properties of the VP model, which make its
implementation in practical numerical algorithms feasible and
very promising in a wide class of problems.

Recently, solid mathematical work was done on the scalar-
ization of time–harmonic EM fields [8] in inhomogeneous uni-
axial problems involving sources, which clearly proves that the
TE/TM decomposition with respect to a distinguished axis is
possible in inhomogeneous media as long as the distinguished
axis is parallel to the gradient of the material inhomogeneity.
The fundamental concepts of the work presented here were de-
veloped independently from the one reported in [8]. That is why
it carries a number of different original features. First, it was
developed directly in the time domain, making the assumption
for an instantaneous response (the material characteristics of the
medium are assumed frequency independent). This limitation
is common in most conventional time-domain algorithms used
in high-frequency computer-aided design (CAD). Second, the
current approach is based on a more general analysis, which
initially considers all six components of the two VPsand
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. It shows explicitly the conditions under which the TE/TM
decomposition is possible. It also shows the conditions under
which scalarization is not possible, as well as the way the cou-
pling of all modes occurs under these conditions. In contrast, in
[8], the scalarization is carried out by the introduction of auxil-
iary potentials and via the two-dimensional version of the
Helmholtz theorem, which is applied to thetransverse-field
components. Nevertheless, it can be shown that the pair
is equivalent to the pair introduced later in this paper.
Third, the proposed technique uses VP pairs of changing di-
rection, which can handle the solution of lossy inhomogeneous
problems with more than one direction of the gradient of the ma-
terial constants. The equations describing the transition between
orthogonal VP pairs are developed and the issues related to the
uniqueness of the solution are addressed. Lastly, this theoretical
model has been implemented in a finite-difference algorithm,
which, in the time domain, can solve a wide class of problems
involving homogeneous and partly inhomogeneous (e.g., lay-
ered) media with metallic inclusions of any shape, and which
has considerably improved efficiency in comparison with the
conventional finite-difference time-domain (FDTD) algorithm.

This paper has its roots in previous research, which resulted
in the development of a time-domain algorithm based on the
magnetic VP and the second-order wave equation [9]. It was
the first successful attempt to implement the VP concept into a
FDTD algorithm. DeFlaviiset al. [10] and Diazet al. [11] also
reported a transient analysis algorithm based on an auxiliary VP

, which is governed by the vector wave equation.
It must be noted, however, that these VP approaches were not

the first to apply FDTD algorithms to the solution of the second-
order wave equation. Krupeževićet al. [12] proposed the wave-
equation FDTD method to the analysis of waveguide structures
based on the vector wave equation for thevector, which leads
to three coupled scalar wave equations. Aoyagiet al. [13] also
used the second-order wave equation in a hybrid algorithm. It
solved Maxwell’s equations or the vector-wave equation (for
or ) in inhomogeneous regions of the problem space, but used
two scalar wave equations in homogeneous (“divergence-free”)
regions. The two scalar wave equations described the propaga-
tion of two field components only (either magnetic or electric),
which had to be tangential to the subregion’s boundary. From
this early work, it became clear that the vector wave equation for
one of the field vectors does not offer any advantages in com-
parison with the Yee-cell FDTD method in the general three-di-
mensional inhomogeneous case. However, it can offer up to 30%
reduction in CPU time if predominantly homogeneous problems
are analyzed where planar partitioning between regions is pos-
sible (i.e., layered structures). The savings are due to the fact
that, in homogeneous regions with infinite planar boundaries of
the same unit normal, the field behavior is entirely represented
by only two scalar quantities (either or ) and their
scalar wave equations.

The first applications of a pair of collinear VPs of fixed di-
rection, which solved the wave equations for only two scalar
WPs, were shown just recently [14]. The first finite-difference
implementation showed that general inhomogeneous problems
could be solved in terms of two scalar quantities. The theo-
retical estimate of the CPU time and memory requirements of

the time-domain wave-potential (TDWP) algorithm in compar-
ison with Yee’s FDTD algorithm [15] gives a reduction of at
least one-third in thegeneral case, which is due to the reduced
number of unknowns.

These first applications [14], however, revealed several prob-
lems, which needed further careful study. The choice of the di-
rection of the VPs was crucial when dielectric interfaces were
present, especially between regions, whose dielectric constants
would differ significantly. This choice was also important when
corners and edges were present. It became obvious that the bot-
tleneck is the formulation of the boundary conditions (BCs) for
the VPs. Thus, it became imperative to develop a general model
of the VP propagation, which could give a clear picture of their
behavior at material interfaces and inhomogeneities.

II. GENERAL VP EQUATIONS

One starts with the classical introduction of the magnetic VP
and the electric VP as

(1)

Here, is the magnetic-field vector of a field associated with
electric sources only ( ). The vector is the elec-
tric field associated with magnetic sources only (
). Their counterparts and will be found by substi-

tution in Maxwell’s equations. The total field is a superposi-
tion of and . Note that this implies linear
media. The next step is to substitute (1) in Maxwell’s equations
and split them into two systems of equations as follows:

(2)

(3)

From the first equation in (2), it follows that

(4)

and from the second equation in (3), it follows that

(5)

Here, and are the magnetic scalar potential and electric
scalar potential, respectively. Note the cross-coupling between
the -field and the -potential and the -field and the -po-
tential due to the constants’ nonzero gradients in (4) and (5).
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To complete this analysis, the components of the total field
will be expressed in terms of the VPsand . Making

use of (1), (4), and (5), one arrives at the following field-to-
potential relations:

(6)

Here, the potential functions

(7)

have been introduced. and are first-order linear differen-
tial operators in time

(8)

which make the equations compact and convenient to manipulate.
Alternatively, one may use (1), the second equation of (2), and

the first equation of (3) to derive the equivalent to (6) relations

(9)

The wave equations governing the potentials are readily derived
from (6) and (9) as follows:

(10)

Here, is the second-order differential operator in time

(11)

The vector operators and are the gradients of the
operators defined in (8) so that, e.g.,

(12)

If one applies the generalized Lorenz gauge to the potentials
and

(13)

their general wave equations are obtained as

(14)

(a) (b) (c)

Fig. 1. BCs of the VP components at perfectly conducting edges.

Notice the cross-coupling between the magnetic and electric po-
tentials in the case of nonzero gradients of the constitutive pa-
rameters of the medium. In the case of a homogeneous medium,
(14) defaults to the well-known wave equations.

The following important conclusions can be made from (14).
First, collinear VPs, which are normal to material interfaces, are
not mutually coupled. The scattering of the EM field at an or-
thogonal to the VP pair interface can be fully described by two
scalar quantities, i.e., the magnitudes of the VPs. However, if the
VP pair has tangential components at an interface, they will be
mutually coupled. They will also be indirectly coupled to their
normal components. One has to consider all six coupled com-
ponents, which makes the problem too complicated. Second, a
component of a VP, which is normal to an interface, will never
give rise to a tangential component of its own. On the contrary, a
component of a VP, which is tangential to a dielectric interface

, will generate a normal component . The same holds for
at magnetic interfaces.
Further analysis shows that the BCs at conducting edges of a

pair of VPs, which are tangential to the edge [see Fig. 1(a)], are
well posed. A homogeneous Dirichlet condition is imposed on
the tangential magnetic VP , regardless of the direction
from which the edge is approached. A homogeneous Neumann
condition is imposed on the tangential electric VP ,
where is anydirection normal to the edge [see Fig. 1(b)]. On
the contrary, if a VP is orthogonal to the edge, its BCs are ill
posed. They do depend on the direction from which the edge is
approached. For example, at an-directed right-angle wedge,

, when the observation point approaches the edge
along the -axis [see Fig. 1(c)]. However, when the observation
point approaches the edge along the-axis, the BC is a Dirichlet
one, i.e., . Such ill-posed BCs degrade the performance
of numerical algorithms based on finite discrete meshes.

To summarize, if one can keep the VPs normal to interfaces
and tangential to edges and wedges, two scalar quantities (the
magnitudes of two collinear VPs) will be sufficient to describe
the total field behavior without having to take care of mode cou-
pling. It is now obvious that, in order to solve practical problems
involving material interfaces, edges, and corners in a robust and
simple manner, one cannot keep the direction of the VP pair
constant in space.

III. M ODE EQUIVALENCE

The above conclusion makes it imperative to study the transi-
tions between pairs of collinear VPs. These transitions are pos-
sible and there are clear rules to carry them out, at least in the
case of mutually orthogonal VP pairs. Thus, the computational
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TABLE I
SUMMARY OF THE MODE EQUIVALENCE FORMULAS IN

HOMOGENEOUSREGIONS

region can be divided into domains of constant direction of the
VP pair, such that mode coupling is avoided. This mode cou-
pling will be taken care of in an implicit manner by the transition
equations at the mutual boundaries of the neighboring domains.

One needs to establish the equations, which will allow the
seamless transition between orthogonal VP pairs, so that the
direction of the VP pair can be changed according to the gra-
dient of the EM constants in a given domain. Assume that a
pair is to be rotated to a pair or to a

pair in a neighboring domain. This has to be done
in such a way that the field components expressed in terms of
the pair are the same as those expressed in terms of
the orthogonal pair [either or ] at the do-
main’s boundary. The field components are expressed in terms
of their respective potentials using (6) and (9). The transition
from one pair to another is done using the modes’ longitudinal
field components, which depend on a single potential. Thus, the
WPs of a VP pair at the boundary of a domain are calculated in-
dependently from each other, which is convenient for practical
implementations.

For example, in homogeneous and source-free regions, the
transition equations are based on the field-to-potential relations
summarized in Table I. The expressions in Table I can be easily
expanded to include the case of inhomogeneous lossy regions,
as they follow from the general formulas in (6) and (9). It will be
reiterated that only the two longitudinal field components (
and , , or , or ) are used to calculate the VP pair
( ) at the domain’s boundary (see the highlighted for-
mulas in Table I). Once the WPs are computed at the domain’s
boundary, their respective wave equations are solved within its
volume.

To illustrate the concept, let us consider the computation of
the pair at a flat domain boundary. If the boundary’s
normal is , then the two-dimensional Poisson equations

(15)

must be solved, where and represent source functions
depending on the orthogonal VP pair of the neighboring domain.
For example, if the neighboring VP pair is , then

(16)

If the boundary normal is orthogonal to the direction of the VP
pair , then the pair is computed from the equa-
tions

(17)

There are three important notes to be made here with re-
spect to the finite-difference implementation of the transition
equations (15)–(17). First, the matrices arising from the dis-
cretization of the two-dimensional Poisson equations in (15)
are inverted offline, as a pre-process to the time-stepping anal-
ysis. They depend solely on the size and shape of the domain’s
boundary. Second, the equations in (17) are solved with an ex-
plicit standard second-order-accuracy scheme [16]. Third, any
combination of (15) and (17) can be used at any portion of the
domain’s boundary, which is convenient for the particular ge-
ometry and the BCs of the problem.

In effect, the VP pair transition equations discussed above
set up the BCs for two collinear field components ( ).
The question is whether such BCs ensure the uniqueness of the
solution in the given domain. The answer to this question is
positive and the proof is based on the uniqueness theorem.

IV. UNIQUENESS OF THESOLUTION IN TERMS

OF WPs

The uniqueness theorem in electromagnetics gives the condi-
tions under which the system of Maxwell’s equations will gen-
erate only one possible solution to a given problem. Its mathe-
matical formulation is given in many sources (see, e.g., [1] or
[17]), and it follows from the integral equation:

(18)

where
specific conductivity;

is complex dielectric permittivity;
is complex magnetic permeability.

The vectors and represent the difference field of two
solutions, which are presumed to exist for the same problem
(same equations, same BCs, and same sources). If one can en-
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sure that

(19)

then the volume integral in (18) will vanish, which is possible
only if both and are zero throughout the volume .
Thus, (19) guarantees the uniqueness of the solution.

The classical interpretation of (19) relies on the vector iden-
tities

(20)

They lead to the conclusion that a unique solution to an EM
problem exists ifone of the following BCs is specified over
any part of the boundaryS: the tangential vector (which sets

) or the tangential vector (which sets ).
Below it will be shown that there are other cases satisfying

(19), which should be added to the list of valid BCs. Moreover,
we will give a new interpretation of all cases in terms of TE/TM
modes with respect to a distinguished direction (the direction of
the VP pair).

Let us first represent the difference field (, ) with its
three components with respect to the local coordinate system
( , , ) at a point on the surface, where is the
unit normal vector. One can then expand the integrand of (19)
as

(21)

From (21), it is obvious that specifyingone of the following
BCs over any part of the boundary surfaceScan also ensure the
uniqueness of the solution: the collinear tangential-field com-
ponents ( , ), which sets and , or
the collinear tangential-field components ( , ), which sets

and .
Let us now assume that the BCs for the two normal to the

surface field components ( , ) are specified over a part of
the boundary, which we will denote as. Below, we will show
that this is a valid BC according to the uniqueness theorem as
long as the constitutive parameters remain constant over. The
above assumption means that the difference field has no normal
components at the boundary surface

and over (22)

From Maxwell’s equations, it follows that the remaining tan-
gential components of the difference field satisfy the two-di-
mensional Laplace equation over. Notice that (22) is equiv-
alent to defining the difference field as a wave, which is
known to have tangential-field components satisfying the two-
dimensional Laplace equation in the-transverse plane. Never-
theless, we will show that the above statement is true. For ex-
ample, let us consider the vector. The difference field does
not have sources, therefore, . Assume that
over , where denotes the gradient operator with respect to

the tangential to the surface coordinates . The following
is then true over :

(23)

Taking the two-dimensional gradient of (23) leads to the
equation

(24)

The vector has only a normal component, which is
identical to the normal component of the full curl of the
field . Thus,

(25)

However, it has been assumed that everywhere on
. It follows that the field satisfies the two-dimensional

Laplace equation over the boundary portion

over (26)

In a dual manner, one can show that if (22) holds over the
boundary portion , the field also satisfies the two-di-
mensional Laplace equation

over (27)

Equations (26) and (27) will ensure vanishing tangential
components of the difference field over only if the BCs
complementing (26) and (27) are homogeneous Dirichlet ones
along the contour bounding , i.e., or
along . This condition is satisfied if is surrounded by
portions of the boundary surface where the tangential field
components’ boundary values are set. Thus, specifying the two
collinear normal field components over a part of the
boundary surface is a valid BC, which ensures the uniqueness
of the solution provided that the tangential gradients of the
material constants over are zero. Specifying
over the wholeclosedboundary surface does not guarantee
vanishing and . Moreover, according to the uniqueness
theorem of Laplace equation, (26) and (27) will not have unique
solutions themselves. In order for a unique solution to (26) and
(27) to exist, at least one point on the boundary surface(or
its contour if is open) must have the function’s value
specified. In order for this unique solution to be a trivial one,
this function boundary value must be zero, and the BCs at all
other contour points (if is open) must be homogeneous.

To summarize, one must specify one of the following:
or or or for at

least one point on the boundary surface. On the remainder of
it, one can set either the values of the normal pair or
the values of any of the above pairs.

The BCs in terms of two collinear field vectors
over the domain surface in effect set the boundary values
for the respective VP pair . Thus, the two potential
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Fig. 2. Discretization cell showing the location in space of the three possible
VP pairs in a rectangular coordinate system.

wave equations describing the field propagation inside a do-
main are complemented by Dirichlet BCs, which are calculated
at the domain’s boundary via the transition equations discussed
in Section III. In practice, a closed-domain surface will never re-
quire BCs in terms of normal field components only,
simply because the domain’s VP pair of constant direction can
never be normal to the domain boundaryat every point.

The introduction of domains of constant direction of the VP
pair in practical algorithms eliminates the complications arising
from mode coupling. It makes the proposed theoretical model
efficient and applicable to the solution of practical EM prob-
lems. It is clearly simpler to implement in cases of predomi-
nantly homogeneous regions with large planar interfaces. How-
ever, there are no theoretical limits to its implementation to gen-
eral lossy inhomogeneous problems.

V. FINITE-DIFFERENCEIMPLEMENTATION

The above theory has been implemented in a finite-difference
algorithm, in which the domains are either boxes (six-sided rect-
angular prisms) or planar layers. Their boundaries are always in
homogeneous regions. Central differences are used throughout
the algorithm, which is based on the finite-difference discretiza-
tion of the wave equations of the WPs and the transition for-
mulas given in Table I. Every two collinear VPs are displaced
by a half-step along all three axes (see Fig. 2). Besides, the mag-
netic VPs are displaced by a half-step in time with respect to the
electric VPs.

The quantities calculated by the algorithm are normalized po-
tential functions such that the finite-difference transition equa-
tions, which involve derivatives of both, i.e., the magnetic and
electric VPs, manipulate numbers of the same order. The VPs

are represented by the quantities

(28)

Here, is the intrinsic impedance of vacuum.

In a homogeneous medium, the discretized wave equation,
which allows the computation of each WP according to (14), is

(29)

Here, ( , , or ) is a second-order finite-difference
operator with respect to the variable, is a first-order
finite-difference operator with respect to time, is the re-
spective WP ( or ), and is a normalized source function

or , where
is the local speed of light. The rest of the

numerical constants are as follows:

where or

There is no need to explicitly calculate the scalar potentials
and , which are related to the VPs via Lorenz gauge (13)

unless inhomogeneous lossy problems are solved. In the latter
case, the finite-difference implementation requires the explicit
computation of the scalar potentials via (13) and their subse-
quent substitution in (14).

The BCs at dielectric and magnetic interfaces are automati-
cally satisfied if the normal to the interface VP pair is used. The
values of the VPs at the interfaces are calculated using the gen-
eral equations in (14), which take into account the gradients of
the material constants. The equation at dielectric interfaces
and the equation at magnetic interfaces do not differ from
their respective equations in points of zero gradients
and . The equation at dielectric interfaces differs
from the respective zero-gradient equation by its modified
operator, as dictated by (14). For example, if , then the
Laplacian operator in the equation is replaced by

(30)

where . The equation of at magnetic inter-
faces is dual to that of at dielectric interfaces.

The finite-difference discretization of the three-dimensional
wave equation is straightforward. However, the implementation
of the transition equations via finite differences at the boundary
between two domains deserves more detailed explanation.
There are two cases of interest. Case 1 refers to a boundary
at which the VP pairs of the two neighboring domains are
tangential. Case 2 refers to a boundary at which one of the pairs
is normal. Without loss of generality, we will illustrate it with
the transition equations at a boundary between two domains:
one carrying the pair and the other one carrying
the pair.

Case 1 will correspond to a boundary at a . plane.
The domains overlap with one cell size. Thus, are
calculated via one step inside the do-
main and vice versa. The normalized WPs are calculated using
the following explicit time-stepping discretized equations from



1956 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 8, AUGUST 2002

Table I:

(31)

(32)

(33)

(34)

Here, in addition to the numerical constants defined in (29), one
has to also introduce the following:

where is the permittivity of vacuum

where is the permeability of vacuum

Notice that (31) and (32) are the finite-difference representa-
tion of the equations in (17), which were used to illustrate the
mode equivalence concept in Section III.

In a uniform mesh, the spatial discretization step
and the time-step are re-

lated through the constant , where is the
highest velocity of light in the structure. According to Courant’s
stability condition, . In this particular algorithm, is
chosen as , which makes the implementation of Liao’s
[18] absorbing boundary condition (ABC) very simple.

Consider now Case 2 when the VP pair of one of the do-
mains is normal to the mutual boundary, e.g., a boundary at

. While (33) and (34) are still valid, (31) and (32) are
not applicable because of the second-order derivatives along the
boundary’s normal and . They are now replaced
by the following formulas, which are the finite-difference dis-
cretized version of the expressions in (15):

(35)

(36)

TABLE II
COMPUTATIONAL REQUIREMENTS OF THEFDTD AND THE

TDWP ALGORITHMS

From a computational point-of-view, these equations are quite
different from (31) and (32). They require the solution of
Poisson’s equation at the domain boundary. Finite differences
are used again to discretize them. The resultant matrix is
inverted offline only once before the time-stepping loop starts.

According to the number of operations per cell, in its finite-
difference implementation, the algorithm would require at most
two-thirds of the computation time and, at most, two-thirds of
the memory requirements of the Yee-cell FDTD algorithm in
the general case (see Table II). The savings are very significant
for problems, which can be handled by only one of the two WPs
in a pair.

Stability criteria, discretization cell size, and excitation wave-
forms are chosen exactly as in a conventional FDTD algorithm.

VI. NUMERICAL TESTS

There are three important issues that have been tested numer-
ically and will be presented here, i.e., the transition between do-
mains with different direction of the VP pair, the correct field
representation at edges and corners, and the VP behavior at ma-
terial (e.g., dielectric) interfaces.

A. Transitions Between Domains

The transition between VP pairs of different (orthogonal) di-
rections has been tested in homogeneous problems since the
domain boundaries in the general algorithm are always at least
one cell away from inhomogeneities. One of the test structures
is shown in Fig. 3. This is a hollow waveguide of rectangular
cross section in the– -plane excited with a dominant
distribution of the -component whose waveform is a sine
wave modulated by a Blackman–Harris window [19]. The input
and output sections are the domains of the pair. The
middle section supports: 1) the pair in the first experi-
ment; 2) the pair in the second experiment; and 3) the

pair in the third experiment. The waveguide ports are
terminated with Liao’s fourth-order ABC [18]. The higher order
Liao’s ABC causes instabilities. In all three experiments, the
wave impedance and wavelength were calculated to compare
with the analytical formulas. The results of all three experiments
are given for the frequency band between the cutoff frequency
of the dominant mode and the cutoff of the mode.
They are practically indistinguishable from each other, and they
only slightly deviate from the analytical calculations at low fre-
quencies close to cutoff (see Fig. 3). Notice that the dominant

mode is fully described by only one WP: either or
or due to its independence from the-coordinate.
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Fig. 3. Impedance and wavelength computations for a waveguide using
a middle domain with three different VP pairs. With lines: TDWP. With
dashed-line: analytical calculations.

Fig. 4. Time sample of the incident pulse (sine wave modulated by
Blackman–Harris window) in the hollow waveguide exciting the structure in
the frequency band from 5 to 10 GHz.

The incident pulse (reflections are below 0.25%) is shown
in Fig. 4 for the three cases of domain segmentation. These
three transient responses are also indistinguishable from each
other.

A second test was performed on an open problem: an in-
finitesimally thin dipole antenna, where the middle domain cen-
tered onto the antenna has all of its six walls bordering do-
mains whose VPs are orthogonal to those in the middle domain.
The current distribution (at three different wavelengths) is com-
pared with the current distribution obtained when the problem
is solved using only one potential, i.e., the magnetic VP compo-
nent tangential to the dipole (see Fig. 5).

B. Dielectric Interfaces and Conducting Edges

The performance of the algorithm in structures with con-
ducting wedges has been tested with an-plane rectangular
bend and -plane rectangular bend of the waveguide consid-
ered before (see Fig. 3).

The structure of the -plane waveguide bend was divided
into three domains, i.e., the input waveguide section with the

pair, the bend section with the pair, and the
output waveguide section with the pair. The edge of
the bend is along the-axis (see Fig. 6). The-parameters were

Fig. 5. Current distribution along half the length of a wire dipole. With lines:
single potential. With points: computational region divided into seven domains.

Fig. 6. Magnitudes of theS-parameters of theH-plane right-angle waveguide
bend. With lines: TDWP. With dashed lines: Agilent HFSS simulation.

calculated and compared with those produced by Agilent HFSS1

(a finite-element method (FEM)-based simulator). The results
are given in Fig. 6.

Similarly, the -plane waveguide bend was divided into three
domains, i.e., the input waveguide section with the
pair, the bend section with the pair, and the output
waveguide section with the pair. The edge of the bend
is along the -axis (see Fig. 7). A comparison with results gen-
erated by Agilent HFSS is given in Fig. 7.

A relevant comparison should be made here between the be-
havior of the field and the behavior of the potentials at perfectly
conducting edges. The potential pair does not have any singu-
larity unlike the field components orthogonal to the edge. The
magnetic potential decreases smoothly to zero as it approaches
the edge, while the electric potential rises gradually in ampli-
tude to produce a zero normal derivative.

The correct representation of the field propagation at a dielec-
tric interface by the normal to the interface VP pair was tested
on an example, which has analytical solution, i.e., the partially
filled waveguide of rectangular cross section. The structure’s
dimensions are shown in Fig. 8. In this example, the solution

1HP HFSS, ver. 5.2, HP EEsof, Santa Rosa, CA, 1998.
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Fig. 7. Magnitudes of theS-parameters of theE-plane right-angle waveguide
bend. With lines: TDWP. With dashed lines: Agilent HFSS simulation.

Fig. 8. Normalized phase constant of the partially filled waveguide. With lines:
TDWP. With lines–points: analytical solution.

for the modes only will be shown, which requires a single
WP, i.e., . No segmentation into domains is necessary. The
analytical solution, which produces the guide phase constant

, is explained in detail in [1]. Fig. 8 shows the dispersion
of the guide phase constant for the dominant mode
whose cutoff frequency is approximately GHz.
Both analytical and computed values are plotted together for
comparison. At the higher end of the frequency band, certain
deviation is observed from the expected values of the domi-
nant-mode phase constant, which is attributed to the exis-
tence of the higher-order mode whose cutoff frequency
is approximately GHz, which corresponds to

. In order to accurately represent all mode-de-
pendent dispersion parameters of a high-frequency structure,
two-dimensional Fourier transform with respect to the two spa-
tial coordinates in the reference plane/port has to be applied to
the field distribution. However, this feature has not yet been de-
veloped.

The microstrip line example tested the algorithm not only for
the correct representation of the field propagation at dielectric
interfaces, but also at conducting edges (the microstrip line is of
infinitesimal thickness). The propagation characteristics of the
line were calculated for the structure shown in Fig. 9. Fig. 9 also

Fig. 9. Effective dielectric constant of the microstrip line. Comparison
between the empirical formula of Hammerstad and Jensen (dashed–dotted
line), FDTD algorithm [20] (line), and the TDWP algorithm (dashed line).

Fig. 10. S-parameters for the dominantTE mode of the rectangular
waveguide post. With points: Agilent HFSS. With lines: TDWP.

shows the calculated effective dielectric constant as a function of
frequency. Comparison is made with empirical results obtained
by the formulas reported in [20], and with the results generated
by the FDTD algorithm [21]. A sheet of-directed currents right
beneath the strip excites the structure. The excitation function in
time is a Gaussian pulse.

The performance of the algorithm was also tested on a
structure involving conducting corners, i.e., waveguide post in
a hollow waveguide (see Fig. 10). Here, all three pairs have
to be used in order to avoid ill-posed BCs at the edges of the
waveguide post, which has a rectangular cross section. Careful
choice of the excitation function was made in order to excite
the dominant mode only. The excitation pulse had a
band-limited spectrum whose spectral components were above
10% of the maximum between 6–10 GHz. The computed
magnitudes of the -parameters are plotted together with the
results obtained by Agilent HFSS in Fig. 10.

VII. CONCLUSION

In this paper, the construction of solutions to general transient
EM problems in terms of two collinear VPs has been consid-
ered. It has been shown that as long as the gradient of the EM
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properties of the analyzed region coincides with the direction
of the VPs, the solution can be built in terms of only two scalar
quantities, i.e., the magnitudes of the VPs. Such a restriction
on the gradient of the constitutive parameters would severely
limit the applicability of the method if VPs of fixed direction
were used throughout the volume. However, it has been shown
that there are no theoretical obstacles for the utilization of VPs
of different directions in different subregions of the analyzed
volume. The method has been implemented in a finite-differ-
ence algorithm, which has better computational efficiency than
the conventional FDTD technique. Current research efforts are
directed toward further generalization of the method to include
the theory of equivalent EM sources. Successful implementation
of this theory would lead to enhanced versatility of the TDWP
algorithm with respect to inhomogeneities and boundary shapes.
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