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Construction of Solutions to Electromagnetic
Problems in Terms of Two Collinear
Vector Potentials

Natalia K. GeorgievaMember, IEEE

Abstract—in this paper, the construction of solutions to tran-  scribe the EM field associated with any configuration of moving
sient electromagnetic (EM) problems in terms of two collinear or static charges (see [3]).
vector potentials (VPs) is subjected to a careful theoretical study It should be recognized that the concept of TE/TM decompo-
and numerical verification. The analysis concerns a general .. . . .
isotropic medium that can be inhomogeneous, lossy, and maysmon (or scalar|.zat|on)'of the EM flelq has often been re_wsned
contain sources. It is also assumed that the medium has instanta- Py researchers in the field of theoretical electromagnetism and
neous response, i.e., its EM properties are frequency independent. complex media electromagnetism. This subject is rather broad
First, the completeness of the solution in terms of the two VPs in and the interested reader is referred to just very few relevant
homogeneous and inhomogeneous media is addressed. Second, tl}f’apers [4]-[7], which provide both comprehensive coverage of

behavior of the VPs at interfaces and edges is considered. Finally, th devel ts in the field and extensive lists of ref
a number of simple, but relevant numerical tests are performed € new developments in the nield and extensive lISts of reter-

to verify the theoretical model. This paper is part of the effort to  €Nnces. At the same time, the approaches of modern computa-
establish the theoretical background of a novel efficient approach tional electromagnetics are almost exclusively based on models,

to the analysis of transient EM propagation based onthe VPs.  which treat the field vectors directly: the system of Maxwell’s
Index Terms—Electromagnetic potentials, electromagnetic tran- €guations or its equivalent integral equations. This paper will
sient analysis, FDTD methods. consider the concept of EM scalarization from the point-of-view

of computational electrodynamics. However, its purpose is not
the introduction of yet another time-domain analysis approach.
It is the hope of the author that this paper will help to add more
T IS well known that the electromagnetic (EM) field can béight onto the subject of EM potentials, their significance, and
described not only in terms of the field vectors, but also insefulness, especially from a computational point-of-view.
terms of vector and scalar potentials. In [1], the following has To the author’s knowledge, the formulation of a numerical
been stated for time—harmonic fields in an isotropic medium, bapproach to the solution of a general (lossy, inhomogeneous,
it is also true in the general transient case: “an arbitrary field involving sources) transient EM problem in terms of VPs has
a homogeneous source-free region can be expressed as a sumr been considered in detail. A possible reason is that it was
a TM field and a TE field.” The TM (with respect to the distin-deemed too complicated for practical purposes. Moreover, the
guished direction of an arbitrary unit vec@rfield is described solution to a transient EM problem in terms of two scalar po-
by the magnetic vector potential (VP) = ¢A, while the TE tentials (the WPs) has always been dismissed as an impossible
field is described by the electric VP = ¢F. Both potentials task. However, as it will be shown below, the general analysis
are solutions of the wave equation in the time domain (or theveals interesting properties of the VP model, which make its
Helmholtz’ equation in the frequency domain). Both vectors aigplementation in practical numerical algorithms feasible and
collinear of fixed directiort. The scalarsd and F will be re-  very promising in a wide class of problems.
ferred to as wave potentials (WPs). Recently, solid mathematical work was done on the scalar-
A similar concept is addressed in [2], where a robust matlration of time—harmonic EM fields [8] in inhomogeneous uni-
ematical proof can be found for the representation of the Edkial problems involving sources, which clearly proves that the
field in terms of two scalar quantities, which are the magnitudg/TM decomposition with respect to a distinguished axis is
of two collinear Hertz potentials (the electric Hertz potenfilal possible in inhomogeneous media as long as the distinguished
and the magnetic Hertz potentidl,,) in an isotropic homoge- axis is parallel to the gradient of the material inhomogeneity.
neous source-free medium. In fact, the concept can be tradgw fundamental concepts of the work presented here were de-
back to 1904, when Whittaker proved that “only two functiongeloped independently from the one reported in [8]. That is why
are actually necessary (in place of four),” i.e4, ®), to de- it carries a number of different original features. First, it was
developed directly in the time domain, making the assumption
M . . . _ fhor an instantaneous response (the material characteristics of the
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F. It shows explicitly the conditions under which the TE/TMhe time-domain wave-potential (TDWP) algorithm in compar-
decomposition is possible. It also shows the conditions undson with Yee's FDTD algorithm [15] gives a reduction of at
which scalarization is not possible, as well as the way the cdeast one-third in thgeneral casgwhich is due to the reduced
pling of all modes occurs under these conditions. In contrast,iamber of unknowns.

[8], the scalarization is carried out by the introduction of auxil- These first applications [14], however, revealed several prob-
iary potentialsl and@ via the two-dimensional version of thelems, which needed further careful study. The choice of the di-
Helmholtz theorem, which is applied to tligransverse-field rection of the VPs was crucial when dielectric interfaces were
components. Nevertheless, it can be shown that thépRir@) present, especially between regions, whose dielectric constants
is equivalentto the paii(A,,, F.) introduced later in this paper. would differ significantly. This choice was also important when
Third, the proposed technique uses VP pairs of changing dbrners and edges were present. It became obvious that the bot-
rection, which can handle the solution of lossy inhomogeneotlsneck is the formulation of the boundary conditions (BCs) for
problems with more than one direction of the gradient of the mtre VPs. Thus, it became imperative to develop a general model
terial constants. The equations describing the transition betwexthe VP propagation, which could give a clear picture of their
orthogonal VP pairs are developed and the issues related toltlebavior at material interfaces and inhomogeneities.
uniqueness of the solution are addressed. Lastly, this theoretical

model has been implemented in a finite-difference algorithm, Il. GENERAL VP EQUATIONS

Wh'Ch.' in the time domain, can solve_ a wide class of prObIemSOne starts with the classical introduction of the magnetic VP
involving homogeneous and partly inhomogeneous (e.g., la

ered) media with metallic inclusions of any shape, and whié%and the electric VR as

has considerably improved efficiency in comparison with the HA = 1 VxA BF=— 1 Vv x F. 1)
conventional finite-difference time-domain (FDTD) algorithm. i €

This paper has its roots in previous research, which resulted - . . ) . .
in the dpev?elopment of a timer?domain algorithm based on th?ere,HA is the magnetic-field vector of a field associated with

5 i .BA = [ F i -
magnetic VPA and the second-order wave equation [9]. It Watg_ecft_rlcl: dsources (:n(IjW( 'tﬁ =0). tTheE vectoris t%eFeIEc
the first successful attempt to implement the VP concept intoOr C_I_'ﬁ . assoc?a © tv@vabfl‘ A m?%eﬁjc S'I(I) %rcefs O%Wb( b_t'
FDTD algorithm. DeFlaviiet al.[10] and Diazet al.[11] also - | helr counterpar an Wil be found Dy substi-

reported a transient analysis algorithm based on an auxiliary ?E"O”f '%’Xlagvf” N qu%a;uo%sk Trll\le :Ott?]l ft'?rl]d IS al_s u;)lgrp05|-
K, which is governed by the vector wave equation. ionof (£, H*)and(E", H"). Note that this implies linear

It must be noted, however, that these VP approaches were rr%etdla. The next step is to substitute (1) in Maxwell's equations

the first to apply FDTD algorithms to the solution of the secon(ﬁnd splitthem into two systems of equations as follows:
order wave equation. Krupevicet al.[12] proposed the wave- VxHF = -V x8,F -V x (Z 13) +v

equation FDTD method to the analysis of waveguide structures

based on the vector wave equation for fheector, which leads 1 -

to three coupled scalar wave equations. Aoyadil. [13] also x [(V ﬁ) x A}

used the second-order wave equation in a hybrid algorithm.|It -

solved Maxwell’s equations or the vector-wave equation Hor poHF =V x V x F_ o HF + <V 0’") <« A—Ji
orﬁ) in inhomogeneous regions of the problem space, but used €

two scalar wave equations in homogeneous (“divergence-free”) (@)
regions. The two scalar wave equations described the propaga- - A - o o ;
tion of two field components only (either magnetic or electric), €%:& " =V X V X n oES — (V _) x I =
which had to be tangential to the subregion’s boundary. From K

this early work, it became clear that the vector wave equation fpf’ x E4 = -V x 9,4 — V x
one of the field vectors does not offer any advantages in com-
parison with the Yee-cell FDTD method in the general three-d v <@ *)
. . . X Al

mensional inhomogeneous case. However, it can offer up to 30% i
reduction in CPU time if predoml_n_an'FIy homogeneoug prot_)len']_srom the first equation in (2), it follows that
are analyzed where planar partitioning between regions is pos-
sible (i.e., layered structures). The savings are due to the fact
that, in homogeneous regions with infinite planar boundaries of
the same unit normal, the field behavior is entirely represented
by only two scalar quantities (eithérx H or# x E) and their and from the second equation in (3), it follows that
scalar wave equations. . . . 1 .

The first applications of a pair of collinear VPs of fixed di- E4=-0A- " A-Vo - <V g) X F. (5)
rection, which solved the wave equations for only two scalar
WPs, were shown just recently [14]. The first finite-differencélere, ¥ and ¢ are the magnetic scalar potential and electric
implementation showed that general inhomogeneous probleseslar potential, respectively. Note the cross-coupling between
could be solved in terms of two scalar quantities. The thethe F'-field and theA-potential and thed-field and theF'-po-
retical estimate of the CPU time and memory requirements tehtial due to the constants’ nonzero gradients in (4) and (5).

V1>><F} (3)

ﬁF:—atﬁ—fﬁ—Wur(vl) xA (4
€ 1

Urn
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To complete this analysis, the components of the total field
(E, H) will be expressed in terms of the VPsandF. Making
use of (1), (4), and (5), one arrives at the following field-to-
potential relations:

BE=B*+ BF = -%,{4,} - Ve -V x il

(b) (©
Fig. 1. BCs of the VP components at perfectly conducting edges.

H=HA+HF = —za{ ;} VU +VxA, (6)
Here, the potential functions

Ay=Aln (4) Notice the cross-coupling between the magnetic and electric po-
SRR tentials in the case of nonzero gradients of the constitutive pa-
L.=F/e (V) @) X !
rameters of the medium. In the case of a homogeneous medium,

have been introduce@.. and%,, are first-order linear differen- (14) defaults to the well-known wave equations.

tial operators in time The following important conclusions can be made from (14).
First, collinear VPs, which are normal to material interfaces, are

L. =eb+o not mutually coupled. The scattering of the EM field at an or-

T, = udy + om ®) thogonal to the VP pair interface can be fully described by two

scalar quantities, i.e., the magnitudes of the VPs. However, if the

which make the equations compact and convenient to manipuliepair has tangential components at an interface, they will be
Alternatively, one may use (1), the second equation of (2), aftHtually coupled. They will also be indirectly coupled to their

the first equation of (3) to derive the equivalent to (6) relation§ormal components. One has to consider all six coupled com-
ponents, which makes the problem too complicated. Second, a

TE{E} —V x <V x A, — ga{ﬁ€}> _Ji component of a VP, which is normal to an interface, will never
give rise to a tangential component of its own. On the contrary, a
. . . .. component of a VP, which is tangential to a dielectric interface
%{H} =V x <V x FL+ %{&n}) —Jm- (9) A, will generate a normal component,. The same holds for
F' at magnetic interfaces.
The wave equations governing the potentials are readily derived-urther analysis shows that the BCs at conducting edges of a

from (6) and (9) as follows: pair of VPs, which are tangential to the edge [see Fig. 1(a)], are
o 5 [ = R well posed. A homogeneous Dirichlet condition is imposed on
VXV X AMJF%&{AM} + T AV} (VE.) x {Fc} the tangential magnetic VR, = 0, regardless of the direction
— i from which the edge is approached. A homogeneous Neumann

. . . condition is imposed on the tangential electricdP; /dn = 0,

V X'V x Fe+TfLE{Fe} + T, {VI}+(VZ,) x {Au} wheres is anydirection normal to the edge [see Fig. 1(b)]. On
_ i the contrary, if a VP is orthogonal to the edge, its BCs are ill
o posed. They do depend on the direction from which the edge is

(10) approached. For example, at ardirected right-angle wedge,

dF./dy = 0, when the observation point approaches the edge

along thez-axis [see Fig. 1(c)]. However, when the observation
gié =%,%. = 1ed% + (60 + 110)0; + 00, (11) point.approaches the e.dge alonghaxis, the BC is a Dirichlet
one, i.e.,F, = 0. Such ill-posed BCs degrade the performance

The vector operatorsV %) and(VZ,,) are the gradients of the of numerical algorithms based on finite discrete meshes.

Here, %> _is the second-order differential operator in time

operators defined in (8) so that, e.qg., To summarize, if one can keep the VPs normal to interfaces
R R R and tangential to edges and wedges, two scalar quantities (the
(VZ) x {F} = (Ve) x g F: + (Vo) x Fz. (12)  magnitudes of two collinear VPs) will be sufficient to describe

) _ . the total field behavior without having to take care of mode cou-
If one applies the generalized Lorenz gauge to the potentials pjing. It is now obvious that, in order to solve practical problems
and F; involving material interfaces, edges, and corners in a robust and
y = simple manner, one cannot keep the direction of the VP pair
Vody =340} Vo E = -T,{0) (13) " constant in space.

their general wave equations are obtained as
I1l. M ODE EQUIVALENCE

= .

_Ji

27 2 1 o
v A“_zﬂe{A“}+(V§€){¢}+(VQ€) X {F°} The above conclusion makes it imperative to study the transi-

92 s [ 2 . . tions between pairs of collinear VPs. These transitions are pos-
V7 _zue{FE}JF(V%){\P}_(V%) x {AM} —Jm- sible and there are clear rules to carry them out, at least in the
(14) case of mutually orthogonal VP pairs. Thus, the computational
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TABLE | must be solved, wherg* and ¢ represent source functions
SUMMARY OF THE MODE EQUIVALENCE FORMULAS IN depending on the orthogonal VP pair of the neighboring domain.
HOMOGENEOUSREGIONS . . . .
For example, if the neighboring VP pair(d,,,, I, ), then

(4,,F,) (4,,F,) (4,,F,)
3 124 ,
(, it 0%y, =0, (TAFy)Y)  -3%4,,+0,(T4F.)) gt =—02, Ay — 0. (S{Fy})
Vo4,
9% 4Ty F 2
04, +0, (5 4F,.}) (2 ot 0% 4,, -3, (%.(F,}) g" ==0;, 1, + 0. (%{Auy}). (16)
Void,)
(0L + T, : -
Ay =3, (T -5 4y, +3.(TiF,)) {Vz . s If the boundary normal is orthogonal to the direction of the VP
s o4l pairii Lz, then the(A,,,, F.,) pair is computed from the equa-
(O, +T R, tions
v;{F&”}m } al(fﬂ{Aﬂy})‘a;Fey ’azaFez_ay(Tﬂ{Auz})
- F, -0,(%,14,3) {(v f;y;f'm)ﬁy} 34 F,, +3,(T,14,.}) —8230141#1; + Sfbe{Aw} =gt
2o 2 2 _F
2 - O e T} = o a7
_aszSX"'ay (fﬂ{Aux}) _a)c(fﬂ{Aﬂy})_azyFy viy{Fez}
Note: V2, =% +d2, There are three important notes to be made here with re-

spect to the finite-difference implementation of the transition
equations (15)—(17). First, the matrices arising from the dis-

region can be divided into domains of constant direction of tifgetization of the two-dimensional Poisson equations in (15)

VP pair, such that mode coupling is avoided. This mode co@te inverted offline, as a pre-process to the time-stepping anal-

pling will be taken care of in an implicit manner by the transitioSis. They depend solely on the size and shape of the domain’s

equations at the mutual boundaries of the neighboring domaifgundary. Second, the equations in (17) are solved with an ex-
One needs to establish the equations, which will allow tHdicit standard second-order-accuracy scheme [16]. Third, any

seamless transition between orthogonal VP pairs, so that fgnbination of (15) and (17) can be used at any portion of the

direction of the VP pair can be changed according to the gi@@main’s boundary, which is convenient for the particular ge-

dient of the EM constants in a given domain. Assume thatoanetry and the BCs of the problem. _

pair (A,,, F.,) is to be rotated to A, F.,) pair ortoa  In effect, the VP pair transition equations discussed above

(A,., F..) pair in a neighboring domain. This has to be donget up the BCs for two collinear field componentge( E).

in such a way that the field components expressed in terms1dte question is whether such BCs ensure the uniqueness of the

the(A,.., I..) pair are the same as those expressed in termsS§fution in the given domain. The answer to this question is

the orthogonal pair [eitherd,,,,, F.,) or (A,.., F..)] atthe do- positive and the proof is based on the uniqueness theorem.

main’s boundary. The field components are expressed in terms

of their respective potentials using (6) and (9). The transition IV. UNIQUENESS OF THESOLUTION IN TERMS

from one pair to another is done using the modes’ longitudinal OF WPs

field components, which depend on a single potential. Thus, therpe niqueness theorem in electromagnetics gives the condi-

WPs of a VP pair at the boundary of a domain are calculated iﬁbns under which the system of Maxwell's equations will gen-

dependently from each other, which is convenient for practicgl, .. only one possible solution to a given problem. Its mathe-

implementations. , matical formulation is given in many sources (see, e.g., [1] or
For example, in homogeneous and source-free regions, EE?]) and it follows from the integral equation:
transition equations are based on the field-to-potential relations

summarized in Table |. The expressions in Table | can be easil
expanded to include the case of inhomogeneous lossy regi%, (55 % 5}}*) . ds

as they follow from the general formulas in (6) and (9). It will b Y

reiterated that only the two longitudinal field componerf (

andEg, £ = x, ory, or z) are used to calculate the VP pair +/// [(a+jwé)*|6ﬁ|2 —l—jw/l|6ﬁ|2} dv=0 (18)
(A,e, ILe) at the domain’s boundary (see the highlighted for- Ve

mulas in Table I). Once the WPs are computed at the domain’s

boundary, their respective wave equations are solved within its

volume. where B o

To illustrate the concept, let us consider the computation of 7 spe/uﬂc.c/c/)r.]ductwny; _ _ o
the(A,.., F...) pair ataflat domain boundary. Ifthe boundary's ¢ =¢ —J¢ IS complex dielectric permittivity;
normal isi = +4, then the two-dimensional Poisson equations # = # — ji is complex magnetic permeability.

The vectorsSE and §H represent the difference field of two
solutions, which are presumed to exist for the same problem
V2 A =gt VI F,=g" 15) (same equations, same BCs, and same sources). If one can en-
Yzt M Yz
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sure that the tangential to the surface coordinates 7). The following

is then true overs,,:
ﬂ (5E x 5}?) d5=0 (19)
5 V., -6H. =0. (23)

then the volume integral in (18) will vanish, which is possible ) ) )

only if both |6E| and|6ﬁ| are zero throughout the voluriigs,. Takmg the two-dimensional gradie’t  of (23) leads to the

Thus, (19) guarantees the uniqueness of the solution. equation

titi'le'ge classical interpretation of (19) relies on the vector iden- V. XV, x6H. + Viﬁﬁ _o (24)
TheV, x 615?7 vector has only a normal component, Wl‘leh is

A (5§X5ﬁ*) — §E- (5ﬁ* xﬁ) — SH* (n % 55). (20) identical to the normal component of the full curl of thél -
field (V x §H.),. Thus,

They lead to the conclusion that a unique solution to an EM
problem exists ifone of the following BCs is specified over
any part of the boundarg the tangential vectak (which sets
$E, = 0) or the tangential vectaH, (which setssH, = 0). ~ However, it has been assumed ti@b,, = 0 everywhere on
Below it will be shown that there are other cases satisfyingy.. It follows that thes H; field satisfies the two-dimensional
(19), which should be added to the list of valid BCs. Moreovekaplace equation over the boundary portigin
we will give a new interpretation of all cases in terms of TE/TM
modes with respect to a distinguished direction (the direction of V2 6H, = 0 overs,,. (26)
the VP pair). L
Let us first represent the difference fiel@H, 6 H) with its In_a dual manner, one can show that if (22) holds over the

three components with respect to the local coordinate system . S . .
o P . P . L Y %oundary portions,,, the 6 E- field also satisfies the two-di-
(#, 71,72) at a point on the surface, whefe= 71 x 75 is the . .
ensional Laplace equation

unit normal vector. One can then expand the integrand of (1'3)
as

(Vi X 6H)p = (V X §H, ) = jw(6D,).  (25)

V2 6E, =0 overS,. (27)
(6E X 5}?*) i =8B, 6H, — 6E,,6H' .  (21)
Equations (26) and (27) will ensure vanishing tangential
From (21), it is obvious that specifyingne of the following components of the difference field ovér, only if the BCs
BCs over any part of the boundary surfé&ean also ensure the complementing (26) and (27) are homogeneous Dirichlet ones
uniqueness of the solution: the collinear tangential-field comatong the contou€’,, boundings,,, i.e.,6E, =00réH, =0
ponents £, , H.), which setsSE. = 0 andéH, = 0, or alongC,. This condition is satisfied ifS,, is surrounded by
the collinear tangential-field componenfs{, H,), which sets portions of the boundary surface where the tangential field
0E,, =0andéH,, = 0. components’ boundary values are set. Thus, specifying the two
Let us now assume that the BCs for the two normal to tleellinear normal field componentd,,, B,,) over a part of the
surface field componentdX,, B,,) are specified over a part of boundary surface is a valid BC, which ensures the uniqueness
the boundary, which we will denote &3 . Below, we will show of the solution provided that the tangential gradients of the
that this is a valid BC according to the uniqueness theoremmsterial constants ovef, are zero. Specifying D,,, B,,)
long as the constitutive parameters remain constantfye€rhe over the wholeclosedboundary surface does not guarantee
above assumption means that the difference field has no norrvmhishingrSET andSH, . Moreover, according to the uniqueness
components at the boundary surfat,e theorem of Laplace equation, (26) and (27) will not have unique
solutions themselves. In order for a unique solution to (26) and
(27) to exist, at least one point on the boundary surfgcéor
its contourC,, if S,, is open) must have the function’s value
specified. In order for this unique solution to be a trivial one,
From Maxwell's equations, it follows that the remaining tanthis function boundary value must be zero, and the BCs at all
gential components of the difference field satisfy the two-dether contour points (if,, is open) must be homogeneous.
mensional Laplace equation ougf. Notice that (22) is equiv- To summarize, one must specify one of the following:
alent to defining the difference field asl&M,, wave, whichis (E. , E.,),or (H. , H. ) or(E., H; )or(E,,, H,) for at
known to have tangential-field components satisfying the twéeast one point on the boundary surfateOn the remainder of
dimensional Laplace equation in thetransverse plane. Never-it, one can set either the values of the normal p8l;,, B,,) or
theless, we will show that the above statement is true. For @ke values of any of the above pairs.
ample, let us consider .. vector. The difference field does The BCs in terms of two collinear field vectots,, H)
not have sources, therefol@;éET = 0.Assumetha¥V, . =0 over the domain surfac8 in effect set the boundary values
oversS,,, whereV | denotes the gradient operator with respect for the respective VP paifA¢, F¢). Thus, the two potential

6D, =0andéB, =0 overs,,. (22)
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4, In a homogeneous medium, the discretized wave equation,
which allows the computation of each WP according to (14), is

/: _yd A,
A | oA (k) 4
D (v2 D2, +v2 D2, f + 02 D2 f)
!6_{',{:1)
AX,i Vol 4, _Dt2t - (35 + SH) Dy f — Sasuf =—-g. (29)
(AR : (7k)
"""f)’* : F, //“(F,“ Here,Dg5 (& = =z, y, or 2) is a second-order finite-difference
447 |'fv'"‘k’” 4, P operator with respect to the variabfe D, is a first-order
wi-§ fm——— R~ finite-difference operator with respect to timg, is the re-
ﬁ/ (,._{}k) yd »/ spective WP ¢, or f;), andg is a normalized source function
/@AZ /6 *%”A Xow b g = Je(WwAt)’VZy or g¢ = Jme(vAR)?//Zo, Where
VG e b Z: v = ¢/ /e-fir is the local speed of light. The rest of the
Ay. Yo numerical constants are as follows:
(i=1,j k-1)
Fig. 2.‘ Discretization cell shovying the location in space of the three possible ve :vAt/Aé’, where¢ = z,y, or z
VP pairs in a rectangular coordinate system. A /
s. =0t/e
wave equations describing the field propagation inside a do- Su =om At/

main are complemented by Dirichlet BCs, which are calculated
at the domain’s boundary via the transition equations discussedhere is no need to explicitly calculate the scalar potentials
in Section . In practice, a closed-domain surface will never reéd and ¥, which are related to the VPs via Lorenz gauge (13)
quire BCs in terms of normal field componeiifs,,, B,,) only, unless inhomogeneous lossy problems are solved. In the latter
simply because the domain’s VP pair of constant direction caase, the finite-difference implementation requires the explicit
never be normal to the domain bound&hat every point. computation of the scalar potentials via (13) and their subse-
The introduction of domains of constant direction of the Vguent substitution in (14).
pair in practical algorithms eliminates the complications arising The BCs at dielectric and magnetic interfaces are automati-
from mode coupling. It makes the proposed theoretical modgllly satisfied if the normal to the interface VP pair is used. The
efficient and applicable to the solution of practical EM probvalues of the VPs at the interfaces are calculated using the gen-
lems. It is clearly simpler to implement in cases of predomeral equations in (14), which take into account the gradients of
nantly homogeneous regions with large planar interfaces. Hollse material constants. Tlig,, equation at dielectric interfaces
ever, there are no theoretical limits to its implementation to geand theA.,, equation at magnetic interfaces do not differ from

eral lossy inhomogeneous problems. their respective equations in points of zero gradiévits= 0
andVy = 0. The A.,, equation at dielectric interfaces differs
V. FINITE-DIFFERENCEIMPLEMENTATION from the respective zero-gradient equation by its modified

The above theory has been implemented in afinite—differen(étgerator’ as dictated by (14). For example i z, then the

algorithm, in which the domains are either boxes (six-sided rec dplacian operator in th.,, equation is replaced by
angular prisms) or planar layers. Their boundaries are alwaysin _, o2 1

homogeneous regions. Central differences are used throughoutv Apa +(Ve)0r® = V1 Ay + €0, (5 a”A““”) (30)
the algorithm, which is based on the finite-difference discretiza-h V2 — 92 +02 Th i t ticint
tion of the wave equations of the WPs and the transition for- ere (lj _I tyyt:]r tk&ﬁ ete(;q_u? |(?[n_ ol t" ? magnetic inter-
mulas given in Table I. Every two collinear VPs are displac:e&Ces IS dual to that ad,.,, at dielectric Intertaces.

by a half-step along all three axes (see Fig. 2). Besides, the mﬁé'l_'he finite-difference discretization of the three-dimensional

netic VVPs are displaced by a half-step in time with respect to t ve equation is straightforward. However, the implementation
of the transition equations via finite differences at the boundary

electric VPs. . . .
etween two domains deserves more detailed explanation.

The quantities calculated by the algorithm are normalized p?h o £ int LC 1 refers t bound
tential functions such that the finite-difference transition equa; ere are o cases ot Interest. L.ase L relers 1o a boundary
which the VP pairs of the two neighboring domains are

tions, which involve derivatives of both, i.e., the magnetic an%t

electric VPs, manipulate numbers of the same order. The V@ gential. Case 2 refers to a boundary at which one of the pairs
(A, Fe) are, represented by the quantities is hormal. Without loss of generality, we will illustrate it with

the transition equations at a boundary between two domains:
ag = M(Af/u) one carrying the(_AW, L..) pair and the other one carrying
A x QY2 —wl/2 the (Auy, Fzy) pair.
Case 1 will correspond to a boundary at & const. plane.
fe =(F: o)/ Zo The domains overlap with one cell size. Th(d,,., F...) are
Vx Q-2 w2 (28) calculated via(A4,,,, F:,) one step inside thé4,,,, £,,) do-
main and vice versa. The normalized WPs are calculated using
Here,Zy, = \/o/eo is the intrinsic impedance of vacuum.  the following explicit time-stepping discretized equations from
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Table I:
thax + (5- + su)Dray + scspa,
=v2D2,a, —v2,D3 0y — vao(pre,) Tt D,
. {Erthy + Saofy}
Dj fo + (52 + 5)Difa + s:5ufo
= D2 fu 2, D2y ool D

(31)

. {u,,Dtay + suoay} (32)
thay + (8- + su)Dray + s-5,0y
= viDzyay — vszzl,am +v0(pre,) D,
AenDife + sc0fe )
Dt2t y T (8 +8.)Defy + 88,1y
= ijzyfy — vszmem — vzo(u,,s,,)_lDZ

(33)

. {/J,,DtagC + suoax}. (34)
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TABLE I
COMPUTATIONAL REQUIREMENTS OF THEFDTD AND THE
TDWP ALGORITHMS

FDTD TDWP
sum./cell 4x6=24 8x2=16
mult./cell 1x6=6 2x2=4
total/cell 5x6-30 10x2=20
memory/cell 1x6=6 2x2=4

From a computational point-of-view, these equations are quite
different from (31) and (32). They require the solution of
Poisson’s equation at the domain boundary. Finite differences
are used again to discretize them. The resultant matrix is
inverted offline only once before the time-stepping loop starts.

According to the number of operations per cell, in its finite-
difference implementation, the algorithm would require at most
two-thirds of the computation time and, at most, two-thirds of
the memory requirements of the Yee-cell FDTD algorithm in
the general case (see Table Il). The savings are very significant
for problems, which can be handled by only one of the two WPs
in a pair.

Here, in addition to the numerical constants defined in (29), oneStability criteria, discretization cell size, and excitation wave-

has to also introduce the following:

Va0 =cAL/ Az
Uy =VAL/\/ AxAy
se0 =0 At/eq, wheresy is the permittivity of vacuum

3#0 :anlAt/NOa

Notice that (31) and (32) are the finite-difference represen

forms are chosen exactly as in a conventional FDTD algorithm.

VI. NUMERICAL TESTS

There are three important issues that have been tested numer-
ically and will be presented here, i.e., the transition between do-

whereyq is the permeability of vacuum mains with different direction of the VP pair, the correct field

representation at edges and corners, and the VP behavior at ma-

Bial (e.g., dielectric) interfaces.

tion of the equations in (17), which were used to illustrate the

mode equivalence concept in Section .
In a uniform mesh, the spatial

A. Transitions Between Domains

discretization step
Ah = Ax = Ay = Az and the time-stepAt are re-
lated through the constamt = Ah/(cAt), wherec is the

The transition between VP pairs of different (orthogonal) di-
rections has been tested in homogeneous problems since the

highest velocity of light in the structure. According to Courant' §omain boundaries in the general algorithm are always at least

stability condition,g > /3. In this particular algorithmyg is

one cell away from inhomogeneities. One of the test structures

chosen ag = 2, which makes the implementation of Liao’siS shown in Fig. 3. This is a hollow waveguide of rectangular

[18] absorbing boundary condition (ABC) very simple.

cross section in the—y-plane excited with a dominafiE. o,

Consider now Case 2 when the VP pair of one of the déistribution of the E,-component whose waveform is a sine
mains is normal to the mutual boundary, e.g., a boundary#@ve modulated by a Blackman—Harris window [19]. The input
x = const. While (33) and (34) are still valid, (31) and (32) areé2nd output sections are the domains of tHe, ) pair. The
not applicable because of the second-order derivatives alongthigldle section supports: 1) tiiel.., F.) pair in the first experi-

by the following formulas, which are the finite-difference dis{A=, £%) pair in the third experiment. The waveguide ports are

cretized version of the expressions in (15):

v2D?

22
yDyytz +v2D% ay

= —viniyay - Uzo(ﬂvfr)_lDz{Erthy + Seofy}
(35)
U121D121yfl‘ + Ungsz

= _UzyDzyfy + Uzo(NTET)_lDZ{NTDtay + Suoay}'
(36)

terminated with Liao’s fourth-order ABC [18]. The higher order
Liao's ABC causes instabilities. In all three experiments, the
wave impedance and wavelength were calculated to compare
with the analytical formulas. The results of all three experiments
are given for the frequency band between the cutoff frequency
of the dominanfl'Eq; mode and the cutoff of th&Eqg, mode.
They are practically indistinguishable from each other, and they
only slightly deviate from the analytical calculations at low fre-
guencies close to cutoff (see Fig. 3). Notice that the dominant
TEq; mode is fully described by only one WP: eith&r or £,

or A, due to its independence from thecoordinate.
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Fig. 5. Current distribution along half the length of a wire dipole. With lines:
Fig. 3. Impedance and wavelength computations for a waveguide usigiggle potential. With points: computational region divided into seven domains.
a middle domain with three different VP pairs. With lines: TDWP. With
dashed-line: analytical calculations.
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Fig. 4. Time sample of the incident pulse (sine wave modulated by

Blackman—Harris window) in the hollow waveguide exciting the structure in

the frequency band from 5 to 10 GHz. Fig. 6. Magnitudes of th§-parameters of th& -plane right-angle waveguide
bend. With lines: TDWP. With dashed lines: Agilent HFSS simulation.

The incident pulse (reflections are below 0.25%) is shown ) )
in Fig. 4 for the three cases of domain segmentation. Thedlculated and compared with those produced by Agilent HFSS

three transient responses are also indistinguishable from ed@finite-element method (FEM)-based simulator). The results
other. are given in Fig. 6.

A second test was performed on an open problem: an in-Similarly, thef-plane waveguide bend was divided into three
finitesimally thin dipole antenna, where the middle domain cefomains, i.e., the input waveguide section with the., )
tered onto the antenna has all of its six walls bordering dBr, the bend section with thel,, F,) pair, and the output
mains whose VPs are orthogonal to those in the middle domalffveguide section with thed.., £:.) pair. The edge of the bend
The current distribution (at three different wavelengths) is cortf 8long they-axis (see Fig. 7). A comparison with results gen-

pared with the current distribution obtained when the probleffated by Agilent HFSS is given in Fig. 7.
is solved using only one potential, i.e., the magnetic VP compo-A rélevant comparison should be made here between the be-

nentA,. tangential to the dipole (see Fig. 5). havior of the field and the behavior of the potentials at perfectly
" conducting edges. The potential pair does not have any singu-
B. Dielectric Interfaces and Conducting Edges larity unlike the field components orthogonal to the edge. The

: magnetic potential decreases smoothly to zero as it approaches
The edge, while the electric potential rises gradually in ampli-
él._lde to produce a zero normal derivative.

The correct representation of the field propagation at a dielec-

ered before (see Fig. 3). . - (}ric interface by the normal to the interface VP pair was tested
The structure of théd-plane waveguide bend was divide . i D .
on an example, which has analytical solution, i.e., the partially

into three d_omams, €., thg mpu_t waveguide septlon with tIfllﬁed waveguide of rectangular cross section. The structure’s
(A., I.) pair, the bend section with thel,,, F) pair, and the

output waveguide section with tHel,, ) pair. The edge of dimensions are shown in Fig. 8. In this example, the solution
the bend is along the-axis (see Fig. 6). Th8-parameters were HP HFSS, ver. 5.2, HP EEsof, Santa Rosa, CA, 1998.

ducting wedges has been tested with Frplane rectangular
bend andE-plane rectangular bend of the waveguide consi
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) . . .~ Fig. 9. Effective dielectric constant of the microstrip line. Comparison
Fig. 7. Magnitudes of th&-parameters of th&-plane right-angle waveguide petween the empirical formula of Hammerstad and Jensen (dashed—dotted

bend. With lines: TDWP. With dashed lines: Agilent HFSS simulation. line), FDTD algorithm [20] (line), and the TDWP algorithm (dashed line).
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Fig.8. Normalized phase constant of the partially filled waveguide. With lines:
TDWP. With lines—points: analytical solution. Fig. 10. S-parameters for the dominanfE,; mode of the rectangular
waveguide post. With points: Agilent HFSS. With lines: TDWP.

for the TM,. modes only will be shown, which requires a single
WP, i.e.,A,. No segmentation into domains is necessary. T

analytical solution, which produces the guide phase const

B,, is explained in detail in [1]. Fig. 8 shows the dispersio

of the guide phase constafij for the dominantl'M,o; mode
whose cutoff frequency is approximateff =01 ~ 3.15 GHz. = ;
Both analytical and computed values are plotted together ]Ig;ne is a Gaussian pulse. .

comparison. At the higher end of the frequency band, certainThe pe_rformgnce of the_ algorithm was also te_sted on a
deviation is observed from the expected values of the don%t—rUCture mvolvmg conductn_wg corners, 1.e., wavegwde_ post in
nant-mode phase consta®, which is attributed to the exis- a hollow waveguide (see Fig. 10). Here, all three pairs have

tence of the higher-ordérM,.o. mode whose cutoff frequencytO be ussd n otrderr]_tohivmd |II-p?sed FCS at the e?_ges(;)f thfel
is approximatelyfT™=0= ~ 6.3 GHz, which corresponds to waveguide post, which has a rectangular cross section. Carefu

a/\T=02 ~ 0.38. In order to accurately represent all mode-dec-ho'ce of the excitation function was made in order to excite

pendent dispersion parameters of a high-frequency struct er dominantTEe mode only. The excitation pulse had a

- . ; ; hd-limited spectrum whose spectral components were above
two-dimensional Fourier transform with respect to the two spaa’ .
P P % of the maximum between 6-10 GHz. The computed

tial coordinates in the reference plane/port has to be applie . :
the field distribution. However, this feature has not yet been d@_agmtudes_ of thé‘-parameters are pI_otted together with the
veloped. results obtained by Agilent HFSS in Fig. 10.

The microstrip line example tested the algorithm not only for
the correct representation of the field propagation at dielectric
interfaces, but also at conducting edges (the microstrip line is ofin this paper, the construction of solutions to general transient
infinitesimal thickness). The propagation characteristics of tl&M problems in terms of two collinear VPs has been consid-
line were calculated for the structure shown in Fig. 9. Fig. 9 alsved. It has been shown that as long as the gradient of the EM

ows the calculated effective dielectric constant as a function of
requency. Comparison is made with empirical results obtained
y the formulas reported in [20], and with the results generated
y the FDTD algorithm [21]. A sheet af-directed currents right
beneath the strip excites the structure. The excitation function in

VII. CONCLUSION
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properties of the analyzed region coincides with the direction1o]
of the VPs, the solution can be built in terms of only two scalar
quantities, i.e., the magnitudes of the VPs. Such a restriction
on the gradient of the constitutive parameters would severelji]
limit the applicability of the method if VPs of fixed direction
were used throughout the volume. However, it has been shown
that there are no theoretical obstacles for the utilization of VP§12]
of different directions in different subregions of the analyzed
volume. The method has been implemented in a finite-differ-
ence algorithm, which has better computational efficiency tham3]
the conventional FDTD technique. Current research efforts are
directed toward further generalization of the method to include, )
the theory of equivalent EM sources. Successful implementation
of this theory would lead to enhanced versatility of the TDWP
algorithm with respect toinhomogeneities and boundary shapegl.sl
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